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Abstract. Orthogonal polynomials of a discrete variable
have been widely investigated as fundamental tools of
numerical analysis. This work aims to propose the
extension of their use to quantum mechanical problems.
By exploiting both their connection with coupling and
recoupling coefficients of angular momentum theory and
their asymptotic relationships (semiclassical limit) with
spherical and hyperspherical harmonics, a discretization
procedure, the hyperquantization algorithm, has been
developed and applied to the study of anisotropic
interactions and of reactive scattering. One of the most
appealing features of this method turns out to be a
drastic reduction of memory requirements and comput-
ing time for extensive dynamical calculations. Examples
of the application of this technique to stereodirected
dynamics via an exact representation for the S matrix
as well as to the characterization of molecular beam
polarization are also illustrated.
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1 Introduction: vector coupling in quantum mechanics
and generalized hypergeometric series

In quantum mechanics, couplings of angular momenta
are described as orthogonal basis transformations
which, according to the early developments essentially
due to Wigner, correspond to the Clebsch—Gordan
coeflicients of group theory. Wigner’s 3j coefficients
describe the coupling between states | j;,m;) and | j2, m2)
so to give |j,m). As quantum numbers vary in their
allowed ranges (the ;’s according to triangularity
conditions and m; + my = m), they form orthonormal
vectors. Arranged in matrices, they can be considered as
matrix elements, where quantum numbers are indices for
their allocations [1-7].

Even more crucial for angular momentum theory are
the recoupling coefficients of Racah, which can be
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written as Wigner’s 65 symbols. Among their properties,
there are ‘“‘pentagonal” and ‘“hexagonal” sum rules
and three-term recursive relationships that allow their
efficient computation [8—10].

These coefficients can be written as single sums of the
hypergeometric type [4-6]. Specifically, of the 3F;(1) and
4F5(1) type for 3 and 6; symbols, respectively. Note that
the classical orthogonal polynomials of harmonic anal-
ysis (Jacobi, Gegenbauer, Legendre, etc.) are essentially
Gaussian hypergeometric series, »Fj(x). This led to the
discovery of many interesting properties, including
symmetries which were not obvious from the physical
standpoint [11,12], suggesting that their role could be
wider than that in the context in which Wigner, Racah
and other founders of quantum angular momentum
theory introduced them.

The physical and mathematical viewpoints have led
in recent years to important developments. Here, we will
elaborate on the relevance of these advances from the
point of view of applications to computational quantum
mechanics. See the scheme in Fig. 1 for an illustration
of the relationships which will be exploited in the
following.

The next section outlines connections of coupling and
recoupling coefficients with the orthogonal polynomials
of a discrete variable, of use in numerical analysis. In
Sect. 3 the semiclassical (high-j) limits of the coefficients
are presented, exhibiting their asymptotic correspon-
dence with spherical harmonics and rotation matrices
spanning continuous angular ranges. Section 4 takes the
opposite route: discrete orthogonal polynomials are used
as discrete analogues of spherical (and hyperspherical)
harmonics and explicit examples are given demonstrat-
ing the computational advantages of discretization
procedures. An outlook and perspective of further
applications are presented in the final section.

2 3nj symbols and the discrete polynomials
of numerical analysis

At the end of the 1950s interest was renewed in the
mathematical theory of discrete polynomials, particu-
larly relevant being the work by Hahn (See ref. [13]). For
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Fig. 1. Illustration of the
correspondences among vector
coupling and recoupling coeffi-
cients, discrete polynomials,
angular momentum eigenfunc-
tions, rotation matrices and
hyperspherical harmonics with-
in the framework of discrete—
continuous (semiclassical limit)
and reverse (hyperquantization)
transformations
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example, discrete polynomials (or better polynomials of
a discrete variable) are briefly mentioned in a classic
handbook of mathematical functions [14] and in a well-
known treatise on numerical analysis [15].

Polynomials of a discrete variable appear to have been
introduced by Chebyshev more than a century ago (a list is
given in Ref. [14]). References [14, 15] illustrate their use
for the best representation in the least-squares sense of
functions tabulated on a finite discrete number of points.

These polynomials are orthogonal in a discrete range
of the variable and can be written as hypergeometric
sums. They are currently widely investigated [16] and, in
recent years, a classification of them (Askey scheme [17])
has been proposed.

An interesting aspect is that the coefficients of angular
momentum theory can be identified with particular cases
of discrete polynomials. Specifically 3; coefficients, after
proper normalization, can be identified with particular
cases of Hahn polynomials [13]. As the simplest exam-
ple, it can be verified that the identification (apart from
phases and normalization) between the vector coupling
coeflicients and the discrete Chebyshev polynomials for
integer values of their arguments is best obtained by
directly comparing their explicit expressions.

At the top of the Askey scheme, as the most general of
these polynomials, Askey and Wilson studied discrete
polynomials, from which the others can be derived by
limiting procedures [17]. These polynomials turn out to be
generalizations of 6 coefficients (or Racah coefficients) so
the name Racah’s polynomials was given to them.

3 Spherical harmonics as the semiclassical limit
of coupling coefficients

Semiclassical limits of 3; and 6; coefficients have been
investigated for a long time [18-22]. Racah first derived
an asymptotic formula relating 6; symbols and Legendre
polynomials. Edmonds later generalized Racah’s formula
by substituting the Legendre polynomial with a rotation
matrix. See also the work of Schulten and Gordon [8-10].

An important step forward was made some years
later by Ponzano and Regge, who first studied, in
a general context, the variation of Racah’s coefficients
as a function of their entries for large values of the

arguments. They also discussed the geometry of the as-
ymptotes of the 3j and 6; symbols, associating with each
asymptotic 6j symbol a tetrahedron (Fig. 2a), whose
edges had length j + 1/2, where j is any entry in the 6
symbol and with each asymptotic 3; symbol a triangle
(Fig. 2b), whose edges were labeled in the same manner.

The basic asymptotic formula relating 6; coefficients
and rotation matrices is thus written as
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A further result relates the 3j symbol to a rotation
matrix, for N > [
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Rotation matrices can be considered as particular cases
of Jacobi polynomials, which enter in physics as the
special functions in the theory of representation of
continuous groups. Therefore, the correspondences
previously enunciated among coupling and recoupling
coefficients and rotation matrices also hold for spherical
(and hyperspherical) harmonics, which are important
particular cases.

Note also the limiting relationship between the 6/ and
3j symbols:
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Fig. 2. Geometrical representations of the asymptotic behavior for
coupling and recoupling coefficients: a tetrahedron for 6; (panel a),
a triangle for 3j (panel b) and a distorted tetrahedron for the
asymptotic correspondence among 6; and 3; symbols (panel c¢)

The geometrical interpretation of the above result
discussed by Ponzano and Regge is shown in Fig. 2c.
As L, M and N in the above 6/ symbol grow larger, three
of the vertices of the associated tetrahedron remain
fixed, while the fourth one moves away from the others.
This causes the edges labeled by L, M and N to become
parallel to each other. These edges define a z-axis, with
N —M, L—N and M — L being the projections of the
edges labeled by /,m and n onto this axis. The triangle
associated with the above 3j symbol is the unscaled
triangle in the associated tetrahedron formed by the
three fixed vertices.

Due to this asymptotic correspondence between 3j
and 6; coeflicients, Ponzano and Regge state that the 6/
symbols are the basic ingredients of the theory. Compare
also the key role of Racah’s polynomials in the Askey
scheme. Furthermore, it is important to realize that
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quantum numbers, appearing as angular momenta (or
their projections), are identified with ‘““angles” in the
semiclassical limit (i.e. for high angular momenta): this
property (remember that angular momentum and an-
gular divergence of vectors are conjugate quantities) is
the basis of a long investigation into the supposedly
discrete structure of space-time. See Ref. [23] and
references therein.

4 Hyperquantization: discrete analogues
of spherical harmonics

The hyperquantization technique belongs to the class
of direct approaches to the solution of Schrédinger’s
equation by finite difference. Nevertheless, it differs from
other finite difference schemes, such as the discrete
variable representation [24], in exploiting discrete ana-
logues of orthonormal bases, i.e. hyperspherical
harmonics, usually defined on continuous variables.
Harmonics belong to the class of Jacobi polynomials
and their discrete analogues, in this application, are
Hahn polynomials, 3/ hypergeometric functions of unit
arguments. These polynomials, orthogonal on lattice
points, can be identified, in particular cases, with the
Clebsch—Gordan coefficients in the quantum theory of
angular momentum [13].

In a physical picture of this technique, discretization
can be interpreted as a quantization of an artificial an-
gular momentum vector, A, of length 4 + 1/2. Hyper-
quantization establishes a correspondence between this
vector, with 4 = N/2, and the discretization of space
into N+ 1 slices, convergence to exact results being
achieved in the limit of large N [25, 26].

An important advantage is that this technique can be
extended to any number of mathematical dimensions
and it has found an application in different contexts,
such as the study of anisotropic interactions, reactive
scattering, stereodirected dynamics and analysis of
molecular beam polarization.

4.1 Anisotropic potential

The quantum mechanical treatment of anisotropic
interactions is based on the coupling among different
channels, which can be expressed in terms of matrix
elements involving sums over vector coupling and
recoupling coefficients. Jacob and Wick [27] introduced
the helicity formalism, leading to some simplifications
resulting from the development of alternative reference
frames corresponding to alternative coupling schemes. It
is then possible to formulate the coupling in terms of
quantum numbers which-correspond to approximate
constants of motion.

Hund first introduced alternative coupling schemes
for diatomic molecules carrying spin, electronic and ro-
tational angular momenta. The correspondence between
Hund’s cases and the possible angular momentum cou-
pling schemes at a given total angular momentum has
been widely investigated [28].
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For general anisotropic interactions it has been
demonstrated that it is possible to introduce discretiza-
tion procedures in some expressions of Racah’s algebra,
leading to the introduction of alternative coupling
schemes, labeled by artificial quantum numbers, for the
solution of the multichannel Schrodinger differential
equation. See Refs. [25, 26, 29], for the mathematical
formulation of the hyperquantization technique together
with its application to anisotropic potential.

4.2 Reactive scattering

Within the hyperspherical approach, the dynamical
characterization of a three-body problem is first accom-
plished by a quantization on the surface of a hyper-
sphere (a sphere in a six-dimensional space) at fixed
values of the hyperradius (a measure of total inertia),
then coupled-channel equations are in general integrated
by applying a propagator technique. For an elementary
introduction, See Ref. [30]. The computation of the
adiabatic eigenvalues containing information on the
structure, rotations and internal modes (except that
along the hyperradius) is typically very demanding from
the computational point of view.

The hyperquantization algorithm has recently been
employed in reactive scattering calculations, introducing
a reformulation of the matrix representation of the total
Hamiltonian, which turns out to be very sparse and with
many symmetry properties, thus allowing a considerable
reduction in the memory requirements for the storage
and in the computing time involved in the building up
and diagonalization of very large basis sets. This tech-
nique exploits the peculiar properties of the discrete
analogues of hyperspherical harmonics, i.e. Hahn poly-
nomials orthogonal on a discrete grid of points which
span the interaction region, leading to a tridiagonal
matrix representation of the kinetic energy operator and
a diagonal representation of the interaction potential
[31]. A particularly advantageous aspect of the method is
that no integrals are required and the construction of the
kinetic energy matrix is very simple.

Convergent dynamical calculations for the bench-
mark reaction F + H; have recently been performed,
including fine-structure effect on the reactivity [32, 33].

4.3 Stereodirected representation

Reaction stereodynamics focuses on vector properties,
such as angular momentum vector correlation and steric
effects, of the reactive process under investigation.
Thanks to the development of molecular beam tech-
niques with polarized lasers as well as electric and
magnetic fields, experimental observation of stereody-
namical properties has become feasible [34] and also
their theoretical investigation has recently been per-
formed using a time-independent hyperspherical coor-
dinate method. Within this approach, it is possible to
calculate the full S matrix, from which exact three-
dimensional values of stereodynamical properties can be
derived. Reaction stereodynamics studies can be carried

out using alternative representations of the S matrix.
Body-fixed representations, each of them taking a dif-
ferent vector of the arrangement as the quantization
axis, are particularly advantageous. The stereodirected
representation is characterized by the introduction of the
steric quantum number, v, the projection of an artificial
vector, A, precessing around R (the Jacobi vector
pointing from the diatom center of mass to the third
atom of the arrangement). As the modulus of this vector
increases, the grid of discrete values of the precession
angle more finely scans the angle, 0, between the Jacobi
vectors. Different representations can be easily inter-
converted by means of orthogonal transformations,
expressed in terms of Wigner 3j symbols, which preserve
the symmetry and unitarity of the S matrix in each
representation [22].

The exact three-dimensional method based on
the stereodirected representation has recently been
employed to calculate stereodynamical properties of the
Li + HF [35, 36] and Na + HF [37] reactions.

4.4 Discrete multipole moments for polarization

The relationship between polarizability, anisotropy and
the discretization of spatial distribution of the rotational
angular momentum vector, J, has been widely investi-
gated [38].

The discrete analogues of classical multipole
moments of the angular momentum distribution, aj, can
be represented in terms of vector coupling coefficients as
follows:

1
Ny(2J + 1y
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where N; is the total number of molecules in
the rotational level J, M goes from —J to J and n,(0)
is the number of molecules whose J vector forms
an angle 0 with respect to the direction of the molecular
beam.

By exploiting the orthogonality properties of vector
coupling coefficients, it is possible to express the relative
population of sublevel 7}/ in terms of the discrete ana-
logues of the classical multipole moments of the angular
momentum distribution by simply inverting Eq. (6):
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It is possible to use the asymptotic relationship between
Legendre polynomials and particular vector coupling
coefficients with large angular momenta — a particular
case of formulas in Sect. 3, taking into account that
dly(0) = Pi(cos0).

Py(cos 0) ~ (2J + 1)(—) ! (}\J/[ —‘5\/[ (l)> ®)



for J > I, with cos 0 = —2M/(2J + 1) discretizing the 0
range (from 0 to ) on a grid of 2J + 1 points.

Classical multipole moments can thus be obtained
after integration over 0:

g1+
a; = N,

Y

[ ni0)pi(cos0) )
0

and the classical expression for the spatial distribution of
the rotational angular momentum can be discretized as
follows:

n;(0) = Njf:a/Pl(cos 0) . (10)
1=0

The relationship of the parameters a; with the usual of
Af](J ) of the spherical tensor formalism for the descrip-
tion of orientation and alignment is briefly considered in
Ref. [38].

5 Conclusions and perspectives:
fitting of potential-energy surfaces

Let us look back to the examples and theory outlined in
the previous sections. The last example (Sect. 4.4) leads
to the speculation that in order to specify a quantum
mechanical state one can actually eliminate continuous
variables, such as those spanning an angular range.
Instead there appear to emerge “‘bins” where states of
definite angular momenta find their place. Actually, it is
not often realized that “angles” are conjugate quantities
with respect to angular momenta (Ref. [39], pp. 369—
415). These “bins” are a discretization associated with
uncertainty. In the stereodirected representation
(Sect. 4.3), cones whose aperture angles are dictated by
the uncertainty principle act as discrete funnels for
entrance and exit reaction channels. In our hyperquan-
tization algorithm for reactive (Sect. 4.2) or, in general,
anisotropic (Sect. 4.1) interactions, the dynamics on
continuous manifolds is “discretized” by introducing, as
computational indices, quantities formally analogous to
quantum numbers. The mathematical tools, Hahn and
Racah polynomials (generalizations of 3j and 6 vector
coupling and recoupling coefficients), are indeed the
discrete analogues of the classic orthonormal polynomi-
als of harmonic analysis on symmetric manifolds
(providing the special functions for the representation
of groups, such as rotation matrices and angular
momentum wavefunctions). Their use for expansion
basis for fitting and interpolating potential-energy
functions is being investigated. The ¢ extensions, the
literature on which is growing motivated by implications
both in topology and group theory and in particle
physics and astrophysics [40-44], are also of particular
interest for possible extensions to some of the applica-
tions outlined in this work.
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